In this work, rifampicin-loaded sodium alginate/chitosan polyelectrolyte microparticles were prepared by the ionotropic gelation technique using CaCl as a cross-linking agent. The influence of different sodium alginate and chitosan concentrations on particle size, surface properties, and release behavior was studied. An infrared spectroscopy investigation verified the lack of any drug-polymer interaction. The microparticles prepared using (30, 50) mg of sodium alginate were spherical while when using 75 mg of sodium alginate, vesicles with round heads and tapered tails were formed. The results showed that the microparticle diameters were between (11.872-35.3645) µm. The amount of rifampicin released and the kinetics of drug release from microparticles were studied, and the results showed that by increasing the concentration of the polymer, the release of the rifampicin from the microparticles decreased. The findings showed that rifampicin release followed zero-order kinetics and that drug release from these particles is frequently influenced by diffusion. The electronic structure and characteristics of the conjugated polymers (sodium alginate/Chitosan) were examined using density functional theory (DFT) and PM3 calculations with Gaussian 9, using the B3LYP, and electronic structure calculations using 6-311 G (d,p). The HOMO and LUMO energy levels are determined as the HOMO's maximum and the LUMO's minimum, respectively.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2202279DOI Listing

Publication Analysis

Top Keywords

sodium alginate/chitosan
12
sodium alginate
12
alginate/chitosan polyelectrolyte
8
polyelectrolyte microparticles
8
microparticles prepared
8
kinetics drug
8
drug release
8
electronic structure
8
release
6
sodium
6

Similar Publications

Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.

Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.

View Article and Find Full Text PDF

Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin.

View Article and Find Full Text PDF

Influence of the addition of gum arabic and xanthan gum in the preparation of sodium alginate microcapsules coated with chitosan hydrochloride on the survival of Lacticaseibacillus rhamnosus GG.

Int J Biol Macromol

December 2024

Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil. Electronic address:

The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups.

View Article and Find Full Text PDF

The pervasive use of petroleum-based food packaging has caused significant ecological damage due to their unsustainability and non-biodegradability. Polysaccharide-based biodegradable materials are promising alternatives, but low hydrophobicity and functional properties limit their practical applications which can be overcome by incorporation of phytochemical(s). Therefore, by leveraging the strong antioxidant and antibacterial potential of pterostilbene (PTB), we have developed PTB nanoemulsion (NE) incorporated chitosan/sodium alginate (CS/SA) film for food packaging applications.

View Article and Find Full Text PDF

pH-sensitive chitosan/sodium alginate/calcium chloride hydrogel beads for potential oral delivery of rice bran bioactive peptides.

Food Chem

December 2024

Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:

Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!