Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvoluting and localizing potential targets of CNS drugs by using ambient mass spectrometry imaging. This strategy can map various substances including exogenous drugs, isotopically labeled metabolites, and various types of endogenous metabolites in the brain tissue sections to illustrate their microregional distribution pattern in the brain and locate drug action-related metabolic nodes and pathways. The strategy revealed that the sedative-hypnotic drug candidate YZG-331 was prominently distributed in the pineal gland and entered the thalamus and hypothalamus in relatively small amounts, and can increase glutamate decarboxylase activity to elevate -aminobutyric acid (GABA) levels in the hypothalamus, agonize organic cation transporter 3 to release extracellular histamine into peripheral circulation. These findings emphasize the promising capability of spatiotemporally resolved metabolomics and isotope tracing to help elucidate the multiple targets and the mechanisms of action of CNS drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149982 | PMC |
http://dx.doi.org/10.1016/j.apsb.2022.11.011 | DOI Listing |
BMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shenzhen Bay Laboratory, Shenzhen, Guandong, China.
Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.
View Article and Find Full Text PDFNat Commun
January 2025
Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data, yet computational algorithms for this purpose are scarce. Existing tools target either single omics or lack spatial integration. We generate a graph neural network algorithm named COSMOS to address this gap and demonstrated the superior performance of COSMOS in domain segmentation, visualization, and spatiotemporal map for spatially resolved multi-omics data integration tasks.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Huazhong University of Science and Technology, Department of Biomedical Engineering, CHINA.
Low-molecular-weight compounds of certain structural features may form coacervates through liquid-liquid phase separation (LLPS). These coacervates can enter mammalian cells and affect cellular physiology. Controlling the properties of the coacervates inside cells, however, is a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!