The insoluble phosphorus in the soil is extremely difficult to be absorbed and used directly through the potato root system. Although many studies have reported that phosphorus-solubilizing bacteria (PSB) can promote plant growth and uptake of phosphorus, the molecular mechanism of phosphorus uptake and growth by PSB has not been investigated yet. In the present study, PSB were isolated from rhizosphere soil in soybean. The data of potato yield and quality revealed that the strain P68 was the most effective In the present study, PSB identification, potato field experiment, pot experiment and transcriptome profiling to explored the role of PSB on potato growth and related molecular mechanisms. The results showed that the P68 strain (P68) was identified as by sequencing, with a P-solubilizing ability of 461.86 mg·L after 7-day incubation in National Botanical Research Institute's Phosphate (NBRIP) medium. Compared with the control group (CK), P68 significantly increased the yield of potato commercial tubers by 17.02% and P accumulation by 27.31% in the field. Similarly, pot trials showed that the application of P68 significantly increased the biomass, total phosphorus content of the potato plants, and available phosphorus of the soil up by 32.33, 37.50, and 29.15%, respectively. Furthermore, the transcriptome profiling results of the pot potato roots revealed that the total number of bases was about 6G, and Q30 (%) was 92.35-94.8%. Compared with the CK, there were a total of 784 differential genes (DEGs) regulated when treated with P68, which 439 genes were upregulated and 345 genes were downregulated. Interestingly, most of the DEGs were mainly related to cellular carbohydrate metabolic process, photosynthesis, and cellular carbohydrate biosynthesis process. According to the KEGG pathway analysis, a total of 46 categorical metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were annotated to 101 DEGs found in potato roots. Compared with the CK, most of the DEGs were mainly enriched in glyoxylate and dicarboxylate metabolism (sot00630), nitrogen metabolism (sot00910), tryptophan metabolism (sot00380), and plant hormone signal transduction (sot04075), and these DEGs might be involved in the interactions between P68 and potato growth. The qRT-PCR analysis of differentially expressed genes showed that inoculated treatments P68 significantly upregulated expression of the phosphate transport, nitrate transport, glutamine synthesis, and abscisic acid regulatory pathways, respectively, and the data from qRT-PCR were consistent with that obtained from RNA-seq. In summary, PSB may be involved in the regulation of nitrogen and phosphorus nutrition, glutaminase synthesis, and abscisic acid-related metabolic pathways. This research would provide a new perspective for studying the molecular mechanism of potato growth promotion by PSB in the level of gene expression and related metabolic pathways in potato roots under the application of P68.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150959PMC
http://dx.doi.org/10.3389/fmicb.2023.1140752DOI Listing

Publication Analysis

Top Keywords

transcriptome profiling
12
potato
12
potato growth
12
potato roots
12
metabolic pathways
12
p68
10
p68 potato
8
phosphorus soil
8
molecular mechanism
8
study psb
8

Similar Publications

Background: National Comprehensive Cancer Network guidelines recommend sentinel lymph node biopsy (SLNB) for patients with > 10% risk of positivity, consider SLNB with 5-10% risk, and foregoing with < 5% risk. The integrated 31-gene expression profile (i31-GEP) algorithm combines the 31-GEP with clinicopathologic variables, estimating SLN positivity risk.

Methods: The i31-GEP SLNB risk prediction accuracy was assessed in patients with T1-T2 tumors enrolled in the prospective, multicenter DECIDE study (n = 322).

View Article and Find Full Text PDF

Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.

Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.

View Article and Find Full Text PDF

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!