Modelling the pulse population-wide nucleic acid screening in mitigating and stopping COVID-19 outbreaks in China.

BMC Infect Dis

School of Mathematics and Statistics, Xi'an Jiaotong University, 710049, Xi'an, People's Republic of China.

Published: May 2023

Background: During 2021-2022, mainland China experienced multiple times of local COVID-19 outbreaks in several cities, including Yangzhou, Xi'an etc., and the Chinese government persistently adopted the zero-COVID policy in combating with the local outbreaks.

Methods: We develop a mathematical model with pulse population-wide nucleic acid screening, part of the zero-COVID policy, to reveal its role in controlling the spread of COVID-19. We calibrate the model by fitting the COVID-19 epidemic data of the local outbreaks in Yangzhou and Xi'an, China. Sensitivity analysis is conducted to investigate the impact of population-wide nucleic acid screening on controlling the outbreak of COVID-19.

Results: Without the screening, the cumulative number of confirmed cases increases by [Formula: see text] and [Formula: see text] in Yangzhou and Xi'an, respectively. Meanwhile, the screening program helps to shorten the lockdown period for more than one month when we aim at controlling the cases into zero. Considering its role in mitigating the epidemics, we observe a paradox phenomenon of the screening rate in avoiding the runs on medical resource. That is, the screening will aggravate the runs on medical resource when the screening rate is small, while it helps to relieve the runs on medical resource if the screening rate is high enough. We also conclude that the screening has limited effects on mitigating the epidemics if the outbreak is in a high epidemic level or there has already been runs on medical resources. Alternatively, a smaller screening population per time with a higher screening frequency may be a better program to avoid the runs on medical resources.

Conclusions: The population-wide nucleic acid screening strategy plays an important role in quickly controlling and stopping the local outbreaks under the zero-COVID policy. However, it has limited impacts and even increase the potential risk of the runs on medical resource for containing the large scale outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155657PMC
http://dx.doi.org/10.1186/s12879-023-08265-1DOI Listing

Publication Analysis

Top Keywords

runs medical
24
population-wide nucleic
16
nucleic acid
16
acid screening
16
medical resource
16
screening
13
yangzhou xi'an
12
zero-covid policy
12
screening rate
12
resource screening
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!