Colloidal quantum dots (QDs) are attractive materials for realizing solution-processable laser diodes that could benefit from size-controlled emission wavelengths, low optical-gain thresholds and ease of integration with photonic and electronic circuits. However, the implementation of such devices has been hampered by fast Auger recombination of gain-active multicarrier states, poor stability of QD films at high current densities and the difficulty to obtain net optical gain in a complex device stack wherein a thin electroluminescent QD layer is combined with optically lossy charge-conducting layers. Here we resolve these challenges and achieve amplified spontaneous emission (ASE) from electrically pumped colloidal QDs. The developed devices use compact, continuously graded QDs with suppressed Auger recombination incorporated into a pulsed, high-current-density charge-injection structure supplemented by a low-loss photonic waveguide. These colloidal QD ASE diodes exhibit strong, broadband optical gain and demonstrate bright edge emission with instantaneous power of up to 170 μW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156592 | PMC |
http://dx.doi.org/10.1038/s41586-023-05855-6 | DOI Listing |
mBio
December 2024
Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
Group A (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1 lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Amplified spontaneous emission of CdTe and CdTe-Ag quantum dot composites were compared for increasing the optical stripe length, whereby optical gain coefficients for various emission wavelengths were obtained. In the case of CdTe-Ag nanoparticle composites, we observed that plasmonic coupling causes both optical enhancement and quenching at different wavelengths, where the amplified spontaneous emission intensity becomes enhanced at short wavelengths but suppressed at long wavelengths (>600 nm). To analyze the logistic stripe length dependence of amplified spontaneous emission intensity, we used a differential method to obtain the gain coefficient beyond the amplification range.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200230, P. R. China.
Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.
View Article and Find Full Text PDFFront Robot AI
November 2024
Department of Mechanical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, NJ, United States.
The fusion of wearable soft robotic actuators and motion-tracking sensors can enhance dance performance, amplifying its visual language and communicative potential. However, the intricate and unpredictable nature of improvisational dance poses unique challenges for existing motion-tracking methods, underscoring the need for more adaptable solutions. Conventional methods such as optical tracking face limitations due to limb occlusion.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China.
Tumor therapy has advanced significantly in recent years, but tumor cells can still evade and survive the treatment through various mechanisms. Notably, tumor cells use autophagy to sustain viability by removing impaired mitochondria and clearing excess reactive oxygen species (ROS). In this study, the aim is to amplify intracellular oxidative stress by inhibiting mitochondrial autophagic flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!