Objective: To evaluate the feasibility and usability of cost-effective complex upper and lower limb robot-assisted gait training in patients with stroke using the GTR-A, a foot-plate based end-effector type robotic device.

Methods: Patients with subacute stroke (n=9) were included in this study. The enrolled patients received 30-minute robot-assisted gait training thrice a week for 2 weeks (6 sessions). The hand grip strength, functional ambulation categories, modified Barthel index, muscle strength test sum score, Berg Balance Scale, Timed Up and Go Test, and Short Physical Performance Battery were used as functional assessments. The heart rate was measured to evaluate cardiorespiratory fitness. A structured questionnaire was used to evaluate the usability of robot-assisted gait training. All the parameters were evaluated before and after the robot-assisted gait training program.

Results: Eight patients completed robot-assisted gait training, and all parameters of functional assessment significantly improved between baseline and posttraining, except for hand grip strength and muscle strength test score. The mean scores for each domain of the questionnaire were as follows: safety, 4.40±0.35; effects, 4.23±0.31; efficiency, 4.22±0.77; and satisfaction, 4.41±0.25.

Conclusion: Thus, the GTR-A is a feasible and safe robotic device for patients with gait impairment after stroke, resulting in improvement of ambulatory function and performance of activities of daily living with endurance training. Further research including various diseases and larger sample groups is necessary to verify the utility of this device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164515PMC
http://dx.doi.org/10.5535/arm.23017DOI Listing

Publication Analysis

Top Keywords

robot-assisted gait
20
gait training
20
feasibility usability
8
usability robot-assisted
8
complex upper
8
upper lower
8
lower limb
8
patients stroke
8
hand grip
8
grip strength
8

Similar Publications

Gait asymmetry in post-stroke patients is an important gait characteristic that is associated with their balance control, inefficiency, and risks of musculoskeletal injury to the non-paretic lower limb and falling. Unfortunately, most stroke patients retain an asymmetrical gait pattern, even though their gait independence and gait speed improve. We describe the clinical course of a subacute stroke patient who achieved a symmetrical gait at discharge after undergoing both gait training with orthoses and robot-assisted gait training from the early intervention phase.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a chronic neurological condition that impairs motor and sensory functions, particularly gait. Non-invasive neuromodulation techniques aim to enhance functional recovery and motor-cognitive outcomes, though their effectiveness remains debated. This study compared the effects of transcranial direct current stimulation (tDCS) and trans-spinal direct current stimulation (tsDCS), combined with robotic-assisted gait training (RAGT), on motor function and fatigue in people with MS (pwMS).

View Article and Find Full Text PDF

Purpose: the purpose of this study was to evaluate the safety and usability of the ATLAS 2030 in children with Cerebral Palsy (CP) and Spinal Muscular Atrophy (SMA).

Materials And Methods: the sample consisted of six children, three with CP and three with SMA, who received eight sessions of robot-assisted gait therapy. Safety was measured by the presence of adverse events.

View Article and Find Full Text PDF

Introduction And Objective: Surface electromyography (sEMG) measurements are a valid method for sublesional muscle activity following spinal cord injury (SCI). In the literature there are few reports evaluating the effect of robotic assisted gait training (RAGT) on the sEMG properties change in SCI patients. The aim of this study was to evaluate the influence of RAGT on observed change of sEMG, and in 64 incomplete SCI patients in the sub-acute stage in relation to functional scales.

View Article and Find Full Text PDF

Background: Unrestricted kinematic alignment (uKA) in total knee arthroplasty (TKA) has the theoretical advantage of reproducing patients' constitutional alignment and restoring the pre-arthritic joint line position and obliquity. However, modifications of the original uKA technique have been proposed due to the potential risk of mechanical failure and instability. Given the significant variability in soft tissue behavior within the same bony morphology group, uKA pure knee resurfacing could be occasionally detrimental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!