Cancer-associated fibroblasts (CAFs) are the predominant stromal cells in the microenvironment and play important roles in tumor progression, including chemoresistance. However, the response of CAFs to chemotherapeutics and their effects on chemotherapeutic outcomes are largely unknown. In this study, we showed that epirubicin (EPI) treatment triggered ROS which initiated autophagy in CAFs, TCF12 inhibited autophagy flux and further promoted exosome secretion. Inhibition of EPI-induced reactive oxygen species (ROS) production with N-acetyl-L-cysteine (NAC) or suppression of autophagic initiation with short interfering RNA (siRNA) against ATG5 blunted exosome release from CAFs. Furthermore, exosome secreted from EPI-treated CAFs not only prevented ROS accumulation in CAFs but also upregulated the CXCR4 and c-Myc protein levels in recipient ER+ breast cancer cells, thus promoting EPI resistance of tumor cells. Together, the current study provides novel insights into the role of stressed CAFs in promoting tumor chemoresistance and reveal a new function of TCF12 in regulating autophagy impairment and exosome release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2023.166727 | DOI Listing |
Exp Neurol
January 2025
Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.
Cancers (Basel)
January 2025
Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.
Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!