A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China. | LitMetric

The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China.

Sci Total Environ

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: August 2023

The biodegradability of soil organic carbon (BSOC), defined as soil mineralization C per unit of soil organic carbon (SOC), is considered to be an important indicator of SOC stability and is closely related to the global C cycle. However, the magnitude and driving mechanism of BSOC in farmland remain largely unexplored, especially at the regional scale. Here, we conducted regional scale sampling to investigate latitude distribution pattern of BSOC and the relative contributions of biotic (soil micro-food web) and abiotic (climate and soil) drivers to BSOC in the black soil region of Northeast China. Results showed that BSOC declined with increasing latitude, which indicates that as the latitude increases, SOC becomes more stable in the black soil region of Northeast China. Over a range of latitude from 43°N to 49°N, BSOC was negatively correlated with soil micro-food web metrics of diversity (indicated by species richness), biomass and connectance, and soil factors of soil pH and clay content (CC), while it was positively correlated with climate factors of mean annual temperature (MAT), mean annual precipitation (MAP) and soil factor of soil bulk density (SBD). Among those predictors, soil micro-food web metrics were the most direct factors contributing to the variations of BSOC, which exerted the largest total effect on BSOC (-0.809). Collectively, our results provide convincing evidence that soil micro-food web metrics play a direct vital role in determining the distribution pattern of BSOC over a range of latitudes in the black soil region of Northeast China. This highlights the necessity of considering the role of soil organisms in regulating C dynamics in prediction of SOC mineralization and retention in the terrestrial ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163835DOI Listing

Publication Analysis

Top Keywords

soil
18
black soil
16
soil region
16
region northeast
16
northeast china
16
soil micro-food
16
micro-food web
16
soil organic
12
organic carbon
12
web metrics
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!