A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exogenous melatonin alleviates apple replant disease by regulating rhizosphere soil microbial community structure and nitrogen metabolism. | LitMetric

Apple replant disease (ARD) is a common soil-borne disease afflicting apple plants. Melatonin is a broad-spectrum oxygen scavenger that plays a key role in alleviating stress-induced damage in plants. In this study, we aimed to determine whether adding melatonin to replant soil can promote plant growth by improving the rhizosphere soil environment and nitrogen metabolism. In replant soil, chlorophyll synthesis was blocked, reactive oxygen species (ROS) accumulated in large quantities, and membrane lipid peroxidation was aggravated; this eventually resulted in slow plant growth. However, the application of 200 μM exogenous melatonin enhanced the tolerance of plants to ARD by up-regulating the expression of antioxidant enzyme-related genes and increasing ROS scavenging enzyme activity. Exogenous melatonin also increased the absorption and utilization of N by increasing the expression of nitrogen absorption genes and the activity of nitrogen metabolism enzymes. Exogenous melatonin enhanced the soil microbial environment by promoting soil enzyme activity and bacterial richness and decreasing the abundance of several harmful fungi in rhizosphere soil. Mantel test results showed that soil properties (except for AP) and growth indexes were positively correlated with the rate of N absorption and utilization. Spearman correlation analysis showed that the above factors were closely related to the richness and diversity of bacteria and fungi, indicating that the composition of microbial communities might play a key role in mediating change in the soil environment and thus affect nutrient absorption and growth. These findings provide new insights into how melatonin enhances ARD tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163830DOI Listing

Publication Analysis

Top Keywords

exogenous melatonin
16
rhizosphere soil
12
nitrogen metabolism
12
soil
9
apple replant
8
replant disease
8
soil microbial
8
key role
8
replant soil
8
plant growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!