Neuroinflammation mediated by microglia activation is a critical contributor to Alzheimer's disease (AD) pathogenesis. Dysregulated microglia polarization in terms of M1 overactivation with M2 inhibition is involved in AD pathological damage. Scoparone (SCO), a coumarin derivative, displays several beneficial pharmacological effects including anti-inflammatory and anti-apoptotic properties, however, its neurological effect in AD is still elusive. This study investigated the neuroprotective potential of SCO in AD animal model focusing on determining its effect on M1/M2 microglia polarization and exploring the plausible mechanism involved via investigating its modulatory role on TLR4/MyD88/NF-κB and NLRP3 inflammasome. Sixty female Wistar rats were randomly allocated into four groups. Two groups were sham-operated and treated or untreated with SCO, and the other two groups were subjected to bilateral ovariectomy (OVX) and received D-galactose (D-Gal; 150 mg/kg/day, i.p) alone or with SCO (12.5 mg/kg/day, i.p) for 6 weeks. SCO improved memory functions of OVX/D-Gal rats in the Morris water maze and novel object recognition tests. It also reduced the hippocampal burden of amyloid-β and p-Tau, additionally, the hippocampal histopathological architecture was prominently preserved. SCO inhibited the gene expression of TLR4, MyD88, TRAF-6, and TAK-1, additionally, p-JNK and NF-κBp65 levels were significantly curbed. This was associated with repression of NLRP3 inflammasome along with M1-to-M2 microglia polarization shifting as exemplified by mitigating pro-inflammatory M1 marker (CD86) and elevating M2 neuroprotective marker (CD163). Therefore, SCO could promote microglia transition towards M2 through switching off TLR4/MyD88/TRAF-6/TAK-1/NF-κB axis and inhibiting NLRP3 pathway, with consequent mitigation of neuroinflammation and neurodegeneration in OVX/D-Gal AD model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110239DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
microglia polarization
12
polarization shifting
8
alzheimer's disease
8
sco
7
microglia
5
nlrp3
4
inflammasome inhibition
4
inhibition m1-to-m2
4
m1-to-m2 microglial
4

Similar Publications

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!