Polyamidoamine dendrimer decorated graphene oxide as a pH-sensitive nanocarrier for the delivery of hydrophobic anticancer drug quercetin: a remedy for breast cancer.

J Pharm Pharmacol

Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, India.

Published: June 2023

Objectives: The aim of this study was to investigate the potential of poly(amido amine) (PAMAM) dendrimer decorated graphene oxide (GO) based nanocarrier for targeted delivery of a hydrophobic anticancer drug, quercetin (QSR).

Methods: GO-PAMAM was successfully synthesized by covalent bonding between GO and NH2-terminated PAMAM dendrimer (zero generation). To investigate drug loading performance, QSR was loaded on the surface of GO as well as GO-PAMAM. Further, the release behaviour of QSR-loaded GO-PAMAM was studied. Finally, an in-vitro sulforhodamine B assay was performed in HEK 293T epithelial cells and MDA MB 231 breast cancer cells.

Key Findings: It was observed that GO-PAMAM shows higher QSR loading capacity compared to GO. Also, synthesized nanocarrier exhibits controlled as well as pH-responsive release of QSR and the amount of QSR released at pH 4 was approximately two times higher than the release at pH 7.4. Furthermore, GO-PAMAM was found to be biocompatible for HEK 293T cells, and a high cytotoxic effect was observed for QSR-loaded GO-PAMAM on MDA MB 231 cells.

Conclusions: The present investigation highlights the potential application of synthesized hybrid materials as a nanocarrier with excellent loading and controlled releasing efficiency for the delivery of the hydrophobic anticancer drug.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgad036DOI Listing

Publication Analysis

Top Keywords

delivery hydrophobic
12
hydrophobic anticancer
12
anticancer drug
12
dendrimer decorated
8
decorated graphene
8
graphene oxide
8
drug quercetin
8
breast cancer
8
pamam dendrimer
8
qsr-loaded go-pamam
8

Similar Publications

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Roles of Mature Domain Targeting Signals (MTSs) for Protein Translocation and Secretion in .

Int J Mol Sci

December 2024

Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.

is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.

View Article and Find Full Text PDF

Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.

View Article and Find Full Text PDF

To conjugate or not to conjugate? evaluating the potential use of cell-penetrating peptides for conjugation or complexation with oligonucleotides by surface plasmon resonance.

Int J Pharm

January 2025

Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:

Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!