Significance Statement: Nuclear translocation of dendrin is observed in injured podocytes, but the mechanism and its consequence are unknown. In nephropathy mouse models, dendrin ablation attenuates proteinuria, podocyte loss, and glomerulosclerosis. The nuclear translocation of dendrin promotes c-Jun N -terminal kinase phosphorylation in podocytes, altering focal adhesion and enhancing cell detachment-induced apoptosis. We identified mediation of dendrin nuclear translocation by nuclear localization signal 1 (NLS1) sequence and adaptor protein importin- α . Inhibition of importin- α prevents nuclear translocation of dendrin, decreases podocyte loss, and attenuates glomerulosclerosis in nephropathy models. Thus, inhibiting importin- α -mediated nuclear translocation of dendrin is a potential strategy to halt podocyte loss and glomerulosclerosis.
Background: Nuclear translocation of dendrin is observed in the glomeruli in numerous human renal diseases, but the mechanism remains unknown. This study investigated that mechanism and its consequence in podocytes.
Methods: The effect of dendrin deficiency was studied in adriamycin (ADR) nephropathy model and membrane-associated guanylate kinase inverted 2 ( MAGI2 ) podocyte-specific knockout ( MAGI2 podKO) mice. The mechanism and the effect of nuclear translocation of dendrin were studied in podocytes overexpressing full-length dendrin and nuclear localization signal 1-deleted dendrin. Ivermectin was used to inhibit importin- α .
Results: Dendrin ablation reduced albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Dendrin deficiency also prolonged the lifespan of MAGI2 podKO mice. Nuclear dendrin promoted c-Jun N -terminal kinase phosphorylation that subsequently altered focal adhesion, reducing cell attachment and enhancing apoptosis in cultured podocytes. Classical bipartite nuclear localization signal sequence and importin- α mediate nuclear translocation of dendrin. The inhibition of importin- α / β reduced dendrin nuclear translocation and apoptosis in vitro as well as albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Importin- α 3 colocalized with nuclear dendrin in the glomeruli of FSGS and IgA nephropathy patients.
Conclusions: Nuclear translocation of dendrin promotes cell detachment-induced apoptosis in podocytes. Therefore, inhibiting importin- α -mediated dendrin nuclear translocation is a potential strategy to prevent podocyte loss and glomerulosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356163 | PMC |
http://dx.doi.org/10.1681/ASN.0000000000000150 | DOI Listing |
Plants (Basel)
December 2024
College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China.
is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in has yet to be determined. Here, we observed that in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Gynecology and Obstetrics Clinic "Narodni front", Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
Objective: Prenatal detection of complex chromosomal rearrangements (CCR) is extremely rare, but is of great clinical importance, since CCR can be causative of different congenital disorders. We present an exceptionally rare case of prenatally diagnosed Saethre-Chotzen syndrome (SCS) rising as a consequence of chromothripsis involving chromosomes 5, 7 and 11 and deletion of TWIST1 gene.
Case Report: Brachycephaly, hypertelorism, flat face, micrognathia, relative macroglossia and small posterior fossa were noted on ultrasound examination at 28th gestational week.
Cytokine Growth Factor Rev
January 2025
Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:
Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China. Electronic address:
Biochem Biophys Res Commun
January 2025
Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, placing a substantial financial strain on public health systems. Currently, no specific pharmacological treatments are recommended in existing guidelines. Abscisic acid (ABA), a natural plant hormone, is recognized for its promising potential in the healthcare field due to its diverse biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!