A semiconductor photoelectrochemical (PEC) aptamer sensor has been widely researched in recent years because of its broad application prospects. However, a universal PEC sensor has not been achieved, and its sensing mechanism based on a photogenerated carrier transfer process has yet to be elucidated. Herein, a novel hydrogen-treated TiO nanorod array one-dimensional (1D)/TiCO MXene two-dimensional (2D) (H-TiO/TiCO) PEC aptamer sensor is presented, which achieved a record detection range of 10-10 μg/L and a limit of detection (LOD) of 1 fg/L for microcystic toxins-LR detection. Besides, the PEC sensor can also test serotonin (5-HT), aflatoxin-B1, and prostate-specific antigen (PSA) with high performance by changing the aptamers, exhibiting favorable application universality. Furthermore, a new phenomenon of a switchable enhanced/suppressed photocurrent detection signal was discovered from H-TiO/TiCO PEC aptamer sensors through the variation of the length of the TiO nanorod. Meanwhile, it reveals that the steric hindrance effect determines the photogenerated hole transfer and depolarization processes, which is proposed for the first time as the predominant mechanism of the switchable enhanced/suppressed photocurrent signal for PEC sensors, giving possibilities to develop PEC sensors with higher efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c00046 | DOI Listing |
Talanta
December 2024
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
A more efficient signal amplification strategy is needed to improve the performance of promising photoelectrochemical sensors (PEC). Organic photoelectrochemical transistor (OPECT) sensors are of growing interest in many fields, but their potential has not yet been widely exploited and remains a challenge. In this study, a novel organic photoelectrochemical transistor aptamer (OPECT) biosensor combining photoelectrochemical analysis and organic electrochemical transistor with AgI-TiO (AgI-TNs) as photoreactive material and target-specific DNA chain reaction hybridization as signal amplifier for microcystin-LR detection was developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Medicine, Shanghai University, Shanghai 200444, China.
The sensing of phthalate esters (PAEs) is vital for people's health and environmental protection. This study aimed to develop a highly sensitive and selective photoelectrochemical (PEC) biosensor for PAEs analysis in complex samples. The biosensor is based on a CdS nanoparticle/TiO nanotube (CdS NP/TiO NT) electrode substrate and a truncated PAEs aptamer (PAEs-apt).
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Neurology, Northwest University First Hospital, Xi'an, 710043, China.
An ultra-sensitive photoelectrochemical (PEC) biosensor for amyloid-beta 40 (Aβ40), a biomarker for Alzheimer's disease (AD), was developed using g-C₃N₄ modified with gold nanoparticles (Au NPs) to form Au-C₃N₄. This was further combined with TiO₂ to create a tightly bonded TiO₂/Au-C₃N₄ heterojunction, leading to a highly responsive photocatalytic process. Furthermore, the incorporation of noble metal Au NPs not only enhances photocurrent generation but also securely immobilizes the aptamer through Au-S bonds, providing additional surface binding sites.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
Recently, organic photoelectrochemical transistor (OPECT) has become a very interesting biological measurement method in photoelectrochemical (PEC) bioanalysis and future bio-related applications. OPECT is expected to be a powerful tool for disease detection and early warning. Circulating tumor cells (CTCs) are generally deemed to be the dominant factor of tumor metastasis, and 90 % of cancer patients die from this metastatic disease.
View Article and Find Full Text PDFBioelectrochemistry
April 2025
School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, PR China; Shandong Provincial Innovation Center for Dairy Technology, Zibo 255000, PR China; Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo 255000, PR China. Electronic address:
Zearalenone (ZEN), a secondary metabolite mycotoxin primarily synthesized by Fusarium species and prevalent in cereal grains, exerts estrogenic effects that could induce reproductive toxicity and teratogenic outcomes. To enhance the precision of ZEN detection, we have developed an innovative photoelectrochemical (PEC) aptamer-based sensor employing in situ growth silver sulfide (AgS) quantum dots-sensitized graphitic carbon nitride/bismuth oxybromide (g-CN/BiOBr) heterojunction. The g-CN/BiOBr composite exhibits robust structural stability and straightforward synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!