In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS) and tungsten disulfide (WS) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient () decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS and WS QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation. As the number of the CH groups of alcohol solvents among ethyl, isopropyl, and ()-butyl alcohols increases, the dispersibility of MoS/WS increases. The CH groups of alcohols minimize the surface energy, leading to the effective exfoliation and disintegration of the bulk under heat and pressure. The bulky -butyl alcohol with the highest number of methyl groups shows the highest exfoliation and yield. MoS QDs with a lateral size of about 2.5 nm and WS QDs of about 10 nm are prepared, exhibiting a strong blue luminescence under 365 nm ultraviolet (UV) light irradiation. Their heights are 0.68-3 and 0.72-5 nm, corresponding to a few layers of MoS and WS, respectively. They offer a highly efficient performance in sterilizing as the visible-light-driven photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00176 | DOI Listing |
Green Chem
January 2025
Department of Materials and Environmental Chemistry, Stockholm University SE-106 91 Stockholm Sweden
Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China.
Objective: Although pegylated interferon α-2b (PEG-IFN α-2b) therapy for chronic hepatitis B has received increasing attention, determining the optimal treatment course remains challenging. This research aimed to develop an efficient model for predicting interferon (IFN) treatment course.
Methods: Patients with chronic hepatitis B, undergoing PEG-IFN α-2b monotherapy or combined with NAs (Nucleoside Analogs), were recruited from January 2018 to December 2023 at Tianjin Third Central Hospital.
J Food Sci Technol
January 2025
Department of Food Engineering, University of Córdoba, 230007 Montería, Colombia.
In recent years, global trends indicate consumer interest in functional foods. Thus, there is a trend to replace the use of artificial colors with natural colors that, in addition to being attractive to consumers, provide benefits to the biological functions of the human organism. The objective of this research was the solvent extraction of a natural dye from the roselle flower, its identification and evaluation of its behavior at different pH and temperatures.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Biochemistry, Kastubra Medical College Manipal, Maniapl Academy of Higher Education, Manipal, Karnataka, India.
Background: Colon cancer is the third most common cancer type worldwide. Novel alternative therapeutic anti-cancer drugs against colon cancer with less toxicity are to be explored . This study was aimed to explore the anti-proliferative and anti-migratory activity of various fractions of ethanolic leaf extract on human colon cancer cell lines (HCT-116) and to explore the potential molecular targets from the most potent plant extract fraction.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!