Insoluble amyloid fibrils made from proteins and peptides are difficult to be degraded in both living and artificial systems. The importance of studying their physical stability lies primarily with their association with human neurodegenerative diseases, but also owing to their potential role in multiple bio-nanomaterial applications. Here, gold nanorods (AuNRs) were utilized to investigate the plasmonic heating properties and dissociation of amyloid-β fibrils formed by different peptide fragments (Aβ/Aβ/Aβ) related to the Alzheimer's disease. It is demonstrated that AuNRs were able to break mature amyloid-β fibrils from both the full length (Aβ) and peptide fragments (Aβ/Aβ) within minutes by triggering ultrahigh localized surface plasmon resonance (LSPR) heating. The LSPR energy absorbed by the amyloids to unfold and move to higher levels in the protein folding energy landscape can be measured directly and by luminescence thermometry using lanthanide-based upconverting nanoparticles. We also show that Aβ fibrils, with the largest persistence length, displayed the highest resistance to breakage, resulting in a transition from rigid fibrils to short flexible fibrils. These findings are consistent with molecular dynamics simulations indicating that Aβ fibrils possess the highest thermostability due to their highly ordered hydrogen bond networks and antiparallel β-sheet orientation, hence affected by an LSPR-induced remodeling rather than melting. The present results introduce original strategies for disassembling amyloid fibrils noninvasively in liquid environment; they also introduce a methodology to probe the positioning of amyloids on the protein folding and aggregation energy landscape via nanoparticle-enabled plasmonic and upconversion nanothermometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c01489 | DOI Listing |
AlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.
View Article and Find Full Text PDFBio Protoc
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.
Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFBMC Genomics
January 2025
Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.
View Article and Find Full Text PDFGene
January 2025
College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100 China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100 China. Electronic address:
Nosema bombycis, the causative agent of pebrine disease, poses a significant threat to the silkworm industry due to its negative impact on silkworm health and productivity. The chaperonin-containing tailless complex polypeptide (CCT) plays a crucial role in protein folding, and its β subunit (CCTβ) is essential for the proper folding of cytoskeletal proteins, such as actin and tubulin. In this study, we cloned and expressed the NbCCTβ gene from N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!