Transcriptomic changes in porcine articular cartilage one year following disruption of the anterior cruciate ligament.

PLoS One

Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America.

Published: October 2023

AI Article Synopsis

  • A study involving 72 Yucatan minipigs was conducted to investigate transcriptomic changes during early to mid-stage development of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament transection, with various treatment groups analyzed over three timepoints (1, 4, and 52 weeks).
  • Gene expression analysis showed significant differences between injured and healthy cartilage, peaking at 1 and 4 weeks, then decreasing at 52 weeks, indicating the effects of treatment on PTOA progression.
  • Key genes linked to cartilage injury were consistently upregulated, with specific new genes identified at 52 weeks, while functional pathway analysis highlighted critical processes like cellular proliferation and immune response at different timepoints after ligament injury.

Article Abstract

To determine the transcriptomic changes seen in early- to mid-stage posttraumatic osteoarthritis (PTOA) development, 72 Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair, followed by articular cartilage harvesting and RNA-sequencing at three different postoperative timepoints (1, 4, and 52 weeks). Six additional subjects received no ligament transection and provided cartilage tissue to serve as controls. Differential gene expression analysis between post-transection cartilage and healthy cartilage revealed an initial increase in transcriptomic differences at 1 and 4 weeks followed by a stark reduction in transcriptomic differences at 52 weeks. This analysis also showed how different treatments genetically modulate the course of PTOA following ligament disruption. Specific genes (e.g., MMP1, POSTN, IGF1, PTGFR, HK1) were identified as being upregulated in the cartilage of injured subjects across all timepoints regardless of treatment. At the 52-week timepoint, 4 genes (e.g., A4GALT, EFS, NPTXR, ABCA3) that-as far as we know-have yet to be associated with PTOA were identified as being concordantly differentially expressed across all treatment groups when compared to controls. Functional pathway analysis of injured subject cartilage compared to control cartilage revealed overarching patterns of cellular proliferation at 1 week, angiogenesis, ECM interaction, focal adhesion, and cellular migration at 4 weeks, and calcium signaling, immune system activation, GABA signaling, and HIF-1 signaling at 52 weeks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156018PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284777PLOS

Publication Analysis

Top Keywords

transcriptomic changes
8
cartilage
8
articular cartilage
8
anterior cruciate
8
cruciate ligament
8
cartilage revealed
8
transcriptomic differences
8
differences weeks
8
ligament
6
weeks
5

Similar Publications

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).

View Article and Find Full Text PDF
Article Synopsis
  • Straw degradation is slow in cold environments, but a consortium of bacteria and fungi, named LHWA, was developed to enhance this process.
  • Under 4 °C, this consortium achieved a 55.52% straw weight loss in liquid fermentation after 30 days and 58.36% in solid fermentation after 60 days.
  • Transcriptomic analysis indicated that B. cereus, part of the consortium, enhances cold resistance by modifying cell membrane fluidity and increasing cold stress response proteins.
View Article and Find Full Text PDF

This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!