Voxel based morphometry-detected white matter volume loss after multi-modality treatment in high grade glioma patients.

PLoS One

Department of Radiology, Medical Imaging Center (MIC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Published: May 2023

AI Article Synopsis

  • The study investigates the impact of radiotherapy and chemotherapy on the volumes of white and gray matter in the brains of patients with high grade gliomas, focusing specifically on the tumor-free hemisphere.
  • Using advanced imaging techniques (voxel-based morphometry), the researchers analyzed 3D MR images from 12 patients over time to assess changes in brain matter volume during treatment.
  • Findings showed significant loss of white matter, particularly in the frontal and parietal lobes, which appeared after chemotherapy and showed a delayed response following radiotherapy, highlighting the neurotoxic effects of these treatments.

Article Abstract

Background: Radiotherapy (RT) and chemotherapy are components of standard multi-modality treatment of high grade gliomas (HGG) aimed at achieving local tumor control. Treatment is neurotoxic and RT plays an important role in this, inducing damage even distant to the RT target volume.

Purpose: This retrospective longitudinal study evaluated the effect of treatment on white matter and gray matter volume in the tumor-free hemisphere of HGG patients using voxel based morphometry (VBM).

Method: 3D T1-weighted MR images of 12 HGG patients at multiple timepoints during standard treatment were analyzed using VBM. Segmentation of white matter and gray matter of the tumor-free hemisphere was performed. Multiple general linear models were used to asses white matter and gray matter volumetric differences between time points. A mean RT dose map was created and compared to the VBM results.

Results: Diffuse loss of white matter volume, mainly throughout the frontal and parietal lobe, was found, grossly overlapping regions that received the highest RT dose. Significant loss of white matter was first noticed after three cycles of chemotherapy and persisted after the completion of standard treatment. No significant loss of white matter volume was observed between pre-RT and the first post-RT follow-up timepoint, indicating a delayed effect.

Conclusion: This study demonstrated diffuse and early-delayed decreases in white matter volume of the tumor-free hemisphere in HGG patients after standard treatment. White matter volume changes occurred mainly throughout the frontal and parietal lobe and grossly overlapped with areas that received the highest RT dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155950PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275077PLOS

Publication Analysis

Top Keywords

white matter
36
matter volume
24
matter
12
matter gray
12
gray matter
12
tumor-free hemisphere
12
hgg patients
12
standard treatment
12
loss white
12
white
9

Similar Publications

Essential Tremor (ET) is characterized by action tremor often associated with resting tremor (rET). Although previous studies have identified widespread brain white matter (WM) alterations in ET patients, differences between ET and rET have been less explored. In this study we employed differential tractography to investigate WM microstructural alterations in these tremor disorders.

View Article and Find Full Text PDF

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

Usefulness of Myelin Quantification Using Synthetic Magnetic Resonance Imaging for Predicting Outcomes in Patients With Acute Ischemic Stroke.

Stroke

January 2025

Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).

Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.

View Article and Find Full Text PDF

Inflammation is becoming increasingly recognised as a core feature of dementia with evidence indicating that its role may vary and adapt across different stages of the neurodegenerative process. This study aimed to investigate whether the associations of high-sensitivity C-reactive protein (hs-CRP) with neuropsychological performance (verbal memory, executive function, processing speed) and cerebral white matter hyperintensities (WMHs) differed between older adults with subjective cognitive decline (SCD;  = 179) and mild cognitive impairment (MCI;  = 286). Fasting serum hs-CRP concentrations were grouped into low (<1.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!