Doping on the crystal structure is a common strategy to modify electronic conductivity, ion conductivity, and thermal stability. In this work, a series of transition metal elements (Fe, Co, Cu, Ru, Rh, Pd, Os, Ir, and Pt) doped at the Ni site of LaNiO compounds as cathode materials of solid oxide fuel cells (SOFCs) are explored based on first-principles calculations, through which the determinant factors for interstitial oxygen formations and migrations are discussed at an atomistic level. The interstitial oxygen formation and migration energies for doped LaNiO are largely reduced in contrast to the pristine LaNiO, which is explained by charge density distributions, charge density gradients, and Bader charge differences. In addition, based on a negative correlation between formation energy and migration barrier, the promising cathode materials for SOFCs were screened out between the doped systems. The Fe-doped structures of = 0.25, Ru-doped structures of = 0.25 and = 0.375, Rh-doped structures of = 0.50, and Pd-doped structures of = 0.375 and = 0.50 are screened out with interstitial oxygen formation energy less than -3 eV and migration barrier less than 1.1 eV. In addition, DOS analysis indicates that doping to LaNiO also facilitates the electron conductions. Our work provides a theoretical guideline for the optimization and design of LaNiO-based cathode materials by doping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c01044 | DOI Listing |
ACS Nano
January 2025
Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea.
Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
Rigid, conjugated molecules are excellent candidates as molecular wires since they can achieve full extension between electrodes while maintaining conjugation. Molecular design can be used to minimize the accessible pi surface and interactions between the bridging wire and the electrode. Polyynes are archetypal molecular wires that feature a rigid molecular framework with a cross-section of a single carbon atom.
View Article and Find Full Text PDFPurpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.
Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.
Anal Methods
January 2025
ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang, Jiangsu 222005, China.
We propose an effective method for selectively extracting the valuable metals from the spent LiNiCoMnO cathode material using an oxalic acid-based deep eutectic solvent. Through regulation of the coordination environment, NiO, CoO, and MnO are stepwise separated and further applied in the electrochemical conversion of raw PET bottles to high-purity formic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!