Inverse synthetic aperture ladar (ISAL) has the capability to achieve high-resolution imaging of long-distance targets in a short time because of the laser's short wavelength. However, the unexpected phases introduced by target vibration in the echo can cause defocused imaging results of the ISAL. How to estimate the vibration phases has always been one of the difficulties in ISAL imaging. In this paper, in view of the echo's low signal-to-noise ratio, the orthogonal interferometry method based on time-frequency analysis is proposed to estimate and compensate the vibration phases of ISAL. The method can effectively suppress the influence of noise on the interferometric phases and accurately estimate vibration phases using multichannel interferometry in the inner view field. The effectiveness of the proposed method is validated through simulations and experiments, including a 1200 m distance cooperative vehicle experiment and a 250 m distance noncooperative unmanned aerial vehicle experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.481186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!