Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The laser scanning measurement system has a pivotal role in precision measurement thanks to the non-contacting and low-cost advantages, but traditional methods and systems are inadequate in terms of accuracy, efficiency, and adaptability. In this study, an efficient 3D scanning measurement system based on asymmetric trinocular vision and a multi-line laser is developed to improve the measurement performance. The system design, working principle, and 3D reconstruction method are explored, as well as the innovation of the developed system. Furthermore, an efficient multi-line laser fringes indexing method is presented based on K-means ++ clustering and hierarchical processing to improve processing speed with guaranteed accuracy, which is the key point of the 3D reconstruction method. Various experiments are conducted to verify the capability of the developed system, and the results show that the developed system fulfills measurement needs in adaptability, accuracy, effectiveness, and robustness. The developed system achieves better results than commercial probes for complex measurement conditions, and measurement precision can be achieved to within 18 µm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.481406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!