We propose and test a method for determining a fluorescent medium's absorption or extinction index while it is fluorescing. The method uses an optical arrangement that records changes in fluorescence intensity at a fixed viewing angle as a function of the angle of incidence of an excitation light beam. We tested the proposed method on polymeric films doped with Rhodamine 6G (R6G). We found a strong anisotropy in the fluorescence emission and, thus, limited the method to TE-polarized excitation light. The method proposed is model dependent, and we provide a simplified model for its use in this work. We report the extinction index of the fluorescing samples at a selected wavelength within the emission band of the fluorophore R6G. We found that the extinction index at the emission wavelengths in our samples is appreciably larger than the extinction index at the excitation wavelength, which is the opposite of what one might expect from measuring the absorption spectrum of the medium with a spectrofluorometer. The proposed method could be applied to fluorescent media with additional absorption other than by the fluorophore.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.478433DOI Listing

Publication Analysis

Top Keywords

emission band
8
extinction fluorescing
8
excitation light
8
proposed method
8
method
7
extinction
5
method measuring
4
measuring extinction
4
extinction coefficient
4
coefficient fluorescing
4

Similar Publications

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!