To test the potential role of melanopsin-dependent ipRGCs in surround induction effects, we used a four-channel projector apparatus to hold the cone activity in a surround constant while varying the amount of melanopsin activity between two levels: low (baseline) and high (136% of the baseline). Rods were partially controlled by having the subjects complete conditions after either adapting to a bright field or darkness. The subjects adjusted the red/green balance of a 2.5° central target that varied in its ratio of L and M cones, but was equiluminant with the surround, to a perceptual null point (neither reddish nor greenish). When the surround melanopsin activity was higher, the subjects set their yellow balances at significantly higher /(+) ratios, suggesting the high melanopsin surround was inducing greenishness into the central yellow stimulus. This is consistent with surround brightness effects that show the induction of greenishness into a central yellow test by high luminance surrounds. This potentially provides further evidence for a general role of melanopsin activity in brightness perception.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.480023DOI Listing

Publication Analysis

Top Keywords

melanopsin activity
12
surround induction
8
red/green balance
8
yellow test
8
greenishness central
8
central yellow
8
surround
6
melanopsin-driven surround
4
induction red/green
4
yellow
4

Similar Publications

Pupillary response to blue light as a biomarker of seasonal pattern in Major Depressive Episode: A clinical study using pupillometry.

Psychiatry Res

February 2025

Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France; CNRS UPR 3212 & Strasbourg University, Institute for Cellular and Integrative Neurosciences, F-67000, Strasbourg, France. Electronic address:

Depressive disorders are characterized by disturbances in light signal processing. More specifically, an alteration of the melanopsin response is suggested. The post-illumination pupillary response (PIPR) to blue light (post-blue PIPR) is increasingly used as a marker of the activity of intrinsically photosensitive melanopsin ganglion cells (ipRGCs).

View Article and Find Full Text PDF

Pupillometric and perceptual approaches provide independent estimates of melanopsin activity in humans.

Sleep

December 2024

Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.

Study Objectives: Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response; PIPR) and prior light exposure.

Methods: Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random colour offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and PIPR measures defined by comparing maintained pupil constriction for luminance matched 'red' vs 'blue' pulses.

View Article and Find Full Text PDF

The protective effects of time spent outdoors emphasize the major role of daylight in myopia. Based on the pathophysiology of myopia, the impact of blue light stimulation on the signaling cascade, from melanopsin at the blind spot to clinically relevant biomarkers for myopia, was investigated. Parameters and site of light stimulation are mainly defined by the photopigment melanopsin, that is sensitive to blue light with a peak wavelength of 480 nm and localized on the intrinsically photosensitive retinal ganglion cells (ipRGC) whose axons converge to the optic disc, corresponding to the physiological blind spot.

View Article and Find Full Text PDF

Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.

View Article and Find Full Text PDF
Article Synopsis
  • * Participants kept a sleep diary, wore actigraphy devices, and provided urine samples to measure melatonin levels, with PIPR assessed after exposure to blue and red light.
  • * Findings showed that lower PIPR responses were linked to reduced sleep quality and circadian rhythm function, suggesting age-related changes in light sensitivity may disrupt circadian regulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!