We propose, implement, and validate a new objective method for predicting the trends of visual acuity through-focus curves provided by specific optical elements. The proposed method utilized imaging of sinusoidal gratings provided by the optical elements and the definition of acuity. A custom-made monocular visual simulator equipped with active optics was used to implement the objective method and to validate it via subjective measurements. Visual acuity measurements were obtained monocularly from a set of six subjects with paralyzed accommodation for a naked eye and then that eye compensated by four multifocal optical elements. The objective methodology successfully predicts the trends of the visual acuity through-focus curve for all considered cases. The Pearson correlation coefficient was 0.878 for all tested optical elements, which agrees with results obtained by similar works. The proposed method constitutes an easy and direct alternative technique for the objective testing of optical elements for ophthalmic and optometric applications, which can be implemented before invasive, demanding, or costly procedures on real subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.478022 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.
Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.
View Article and Find Full Text PDFExp Neurol
January 2025
Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.
View Article and Find Full Text PDFBiochem Genet
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
One in 16, 000 live births is affected by the retinal tumor RB (retinoblastoma), which is frequently found in a child's early years. Both of the RB1 alleles that have been locally mutated in the affected retina are present in 60 percent of cases. Retinoblastoma (RB) can be detected using a variety of techniques, including imaging of the brain and orbits, eye examinations under anesthesia (EUAs), and the discovery of cell-free tumor DNA in samples of aqueous humor or plasma.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!