"Wavelength selectivity" is an important intrinsic property of diffractive optical elements that offers significant application potential. Here, we focus on tailored wavelength selectivity, the controlled efficiency distribution into different specific diffraction orders for selected wavelengths or wavelength ranges from UV to IR using interlaced double-layer single-relief blazed gratings composed of two materials. Dispersion characteristics of inorganic glasses, layer materials, polymers, nanocomposites, and high-index liquids are taken into account to investigate the impact of especially intersecting or partially overlapping dispersion curves on diffraction efficiency in different orders, providing a guideline for material choice depending on the required optical performance. By selecting appropriate combinations of materials and adjusting the grating depth, a wide variety of small or large wavelength ranges can be assigned to different diffraction orders with high efficiency that can be beneficially applied to wavelength selective functions in optical systems also including imaging or broadband lighting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.484217DOI Listing

Publication Analysis

Top Keywords

diffraction efficiency
8
double-layer single-relief
8
single-relief blazed
8
blazed gratings
8
diffraction orders
8
wavelength ranges
8
tailored chromatic
4
diffraction
4
chromatic diffraction
4
efficiency
4

Similar Publications

We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

Multilevel diffractive lenses with a small -number (#≤10) and a high diffraction efficiency can shorten optical system length and improve system detection accuracy. The diffraction efficiency of the multilevel diffractive lens fabricated by the high-precision, low-cost nanofabrication method proposed in this paper reaches 90% of the maximum theoretical diffraction efficiency. Furthermore, the spectral imaging characteristics of the diffractive lens are theoretical analysis and experimental verification.

View Article and Find Full Text PDF

For the application scenario of multi-user, high-bandwidth laser communication in satellite internet, this paper proposes a spatiotemporal vector optimization algorithm to achieve high energy utilization in arbitrary multi-beam generation using a liquid crystal optical phased array antenna. The core components of this method involve optimizing phase offsets and power coefficients through iterative processes to achieve precise beam shaping and efficient energy distribution among multiple beams. This approach overcomes the single-link limitation of traditional laser terminals and resolves challenges such as low radiation efficiency and substantial power loss in multi-beam generation systems utilizing passive phased array antennas.

View Article and Find Full Text PDF

We propose an alternative data-free deep learning method using a physics-informed neural network (PINN) to enable more efficient computation of light diffraction from 3D optical metasurfaces, modeling of corresponding polarization effects, and wavefront manipulation. Our model learns only from the governing physics represented by vector Maxwell's equations, Floquet-Bloch boundary conditions, and perfectly matched layers (PML). PINN accurately simulates near-field and far-field responses, and the impact of polarization, meta-atom geometry, and illumination settings on the transmitted light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!