The long-term environmental durability of protected silver mirror coatings is influenced by numerous factors. Here, accelerated environmental exposure testing of model silver mirror coatings illuminated the effects of stress, defects, and layer composition on the extent and mechanisms of corrosion and degradation. Experiments to reduce stress in the highest-stress layers of the mirror coatings revealed that, while stress may affect the extent of corrosion, coating defects and the composition of the mirror layers have the largest influence on corrosion feature development and growth.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.477232DOI Listing

Publication Analysis

Top Keywords

mirror coatings
12
effects stress
8
stress defects
8
defects layer
8
layer composition
8
protected silver
8
silver mirror
8
composition development
4
corrosion
4
development corrosion
4

Similar Publications

Ultrashort pulse sources are complex and resource-intensive. To reduce overhead and simplify operations, we had previously developed a method to deliver ultra-short pulses through fiber-optic links to multiple locations and to characterize them remotely using a compact detector module. We created a pulse pair with varying delays at the central location using a pulse shaper before launching them into the fiber links and measured the first and second-order autocorrelations at the satellite location.

View Article and Find Full Text PDF

Highly Transparent Superhydrophobic Coatings for Prevention of Raindrop Adhesion on Rearview Mirrors.

Langmuir

January 2025

Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.

The adhesion of raindrops on car rearview mirrors poses a significant threat to traffic safety due to the resulting blurred vision. Transparent superhydrophobic coatings have emerged as a potential solution to this problem. However, the development of transparent superhydrophobic coatings is often hampered by complex preparation procedures, high costs, and limited substrate compatibility, rendering them unsuitable for practical applications.

View Article and Find Full Text PDF

Low-vibration cryogenic test facility for next generation of ground-based gravitational-wave observatories.

Rev Sci Instrum

January 2025

OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF

Optical clocks require an ultra-stable laser to probe and precisely measure the frequency of the narrow-linewidth clock transition. We introduce a portable ultraviolet (UV) laser system for use in an aluminum quantum logic clock, demonstrating a fractional frequency instability of approximately mod   = 2 × 10. The system is based on an ultra-stable cavity with crystalline AlGaAs/GaAs mirror coatings, with a frequency quadrupling system employing two single-pass second-harmonic generation (SHG) stages.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!