The long-term environmental durability of protected silver mirror coatings is influenced by numerous factors. Here, accelerated environmental exposure testing of model silver mirror coatings illuminated the effects of stress, defects, and layer composition on the extent and mechanisms of corrosion and degradation. Experiments to reduce stress in the highest-stress layers of the mirror coatings revealed that, while stress may affect the extent of corrosion, coating defects and the composition of the mirror layers have the largest influence on corrosion feature development and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.477232 | DOI Listing |
Ultrashort pulse sources are complex and resource-intensive. To reduce overhead and simplify operations, we had previously developed a method to deliver ultra-short pulses through fiber-optic links to multiple locations and to characterize them remotely using a compact detector module. We created a pulse pair with varying delays at the central location using a pulse shaper before launching them into the fiber links and measured the first and second-order autocorrelations at the satellite location.
View Article and Find Full Text PDFLangmuir
January 2025
Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
The adhesion of raindrops on car rearview mirrors poses a significant threat to traffic safety due to the resulting blurred vision. Transparent superhydrophobic coatings have emerged as a potential solution to this problem. However, the development of transparent superhydrophobic coatings is often hampered by complex preparation procedures, high costs, and limited substrate compatibility, rendering them unsuitable for practical applications.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.
We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.
View Article and Find Full Text PDFOptical clocks require an ultra-stable laser to probe and precisely measure the frequency of the narrow-linewidth clock transition. We introduce a portable ultraviolet (UV) laser system for use in an aluminum quantum logic clock, demonstrating a fractional frequency instability of approximately mod = 2 × 10. The system is based on an ultra-stable cavity with crystalline AlGaAs/GaAs mirror coatings, with a frequency quadrupling system employing two single-pass second-harmonic generation (SHG) stages.
View Article and Find Full Text PDFSci Rep
December 2024
Jihua Laboratory, Foshan, 528000, China.
Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!