Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In-line digital holographic microscopy (DHM) provides three-dimensional images with large fields of view and depths of field and micrometer-scale resolution, using a compact, cost-effective, and stable setup. Here, we develop the theoretical background and experimentally demonstrate an in-line DHM based on a gradient-index (GRIN) rod lens. In addition, we develop a conventional pinhole-based in-line DHM with different configurations to compare the resolution and image quality of both GRIN-based and pinhole-based systems. We show that in a high-magnification regime, where the sample is positioned near a source that produces spherical waves, our optimized GRIN-based setup provides better resolution (∼1.38µ). Furthermore, we employed this microscope to holographically image dilute polystyrene micro-particles with diameters of 3.0 and 2.0 µm. We investigated the effect of light source-detector and sample-detector distances on the resolution, by both theory and experiment. Our theoretical and experimental results are in good agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.476535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!