Water transfer in wood plays a major role during the life time of timber structures but the physics of the various processes involved, such as wetting and imbibition, is not fully understood. Here we show that the angle of contact of a water drop placed in contact with an air dry wood surface is initially larger than 90°, then the drop slowly spreads over the surface, while the apparent (macroscopic) contact angle decreases down to a few tens of degrees. We show that similar results are obtained with a model material, hydrogel, as soon as a perturbation is induced onto the line of contact. We demonstrate that for the gel the initial large apparent contact angle results from a strong deformation of the gel in a thin softened region below the line of contact resulting from the fast diffusion of water and swelling of this region. This phenomenon ensures a real (local) contact angle close to zero. The spreading then results from the progressive diffusion of water at farther distance and successive perturbations of the line of contact when the drop enters in contact with small liquid droplets dispersed along the surface (residues of the chemical reaction during gel preparation). It is suggested that a similar effect occurs for the water drop over a wood surface and explains the large initial contact angle and slow spreading: the line of contact is initially pinned thanks to a wood surface deformation resulting from the wood surface swelling due to water absorption, thus leading to a large contact angle; it will then unpin when the local conditions have changed as a result of water diffusion at further distance, allowing for a small displacement up to the next pinning point and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00229b | DOI Listing |
Eur Phys J E Soft Matter
January 2025
Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.
We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, People's Republic of China.
Water stemming is an efficient method of removing blasting dust by wetting. There is still a lack of methods for rapid optimization of water stemming components with high wettability. Herein, blasting dust was collected from a tunnel in Chongqing (China) to investigate its removal performance by different water stemmings.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, hard to thermoform and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics.
View Article and Find Full Text PDFTalanta
January 2025
Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!