Pattern forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle progression and positioning of the cytokinetic ring. Here, we combined experimental and modeling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by investigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, including in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the absence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153186PMC
http://dx.doi.org/10.1101/2023.04.19.537536DOI Listing

Publication Analysis

Top Keywords

cortical anchoring
12
node patterns
8
fission yeast
8
yeast cells
8
cells pattern
8
pattern formation
8
cytokinetic ring
8
multinucleated cells
8
positioning
5
design principles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!