Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153270PMC
http://dx.doi.org/10.1101/2023.04.22.537932DOI Listing

Publication Analysis

Top Keywords

neuron subtypes
16
genetic toolkit
8
somatosensory neuron
8
thermal stimuli
8
morphologically physiologically
8
physiologically distinct
8
drg neuron
8
drg
5
neuron
5
subtypes
5

Similar Publications

Motor cortical neuronal hyperexcitability associated with α-synuclein aggregation.

NPJ Parkinsons Dis

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.

ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.

View Article and Find Full Text PDF

The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.

View Article and Find Full Text PDF

Autoimmune encephalitis (AE) tends to manifest as a mixture of neuropsychiatric and somatic symptoms, either of which may predominate, and often shows a progressive clinical course sometimes leading to life-threatening conditions. Catatonic and psychotic syndromes, regardless of whether associated with dysautonomia, are common manifestations of AE, especially concerning the anti-NMDAR subtype. Several autoantibodies targeting different neuronal epitopes have been linked to specific clinical manifestations and their detection is embedded in some of the diagnostic criteria for AE.

View Article and Find Full Text PDF

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Article Synopsis
  • Task learning involves forming and storing associations between stimuli and outcomes in memory, but individual neuron representations can change over time.
  • Researchers used two-photon calcium imaging and spatial transcriptomics to study neuron activity and gene expression in the perirhinal cortex during task training.
  • Deleting brain-derived neurotrophic factor disrupted gene expression and task learning, while prolonged training reduced representational drift and strengthened existing memory representations, highlighting key cellular mechanisms in memory stability.
View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!