Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153128 | PMC |
http://dx.doi.org/10.1101/2023.04.17.537173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!