Background: Prediction of preoperative frailty risk in the emergency setting is a challenging issue because preoperative evaluation cannot be done sufficiently. In a previous study, the preoperative frailty risk prediction model used only diagnostic and operation codes for emergency surgery and found poor predictive performance. This study developed a preoperative frailty prediction model using machine learning techniques that can be used in various clinical settings with improved predictive performance.
Methods: This is a national cohort study including 22,448 patients who were older than 75 years and visited the hospital for emergency surgery from the cohort of older patients among the retrieved sample from the Korean National Health Insurance Service. The diagnostic and operation codes were one-hot encoded and entered into the predictive model using the extreme gradient boosting (XGBoost) as a machine learning technique. The predictive performance of the model for postoperative 90-day mortality was compared with those of previous frailty evaluation tools such as Operation Frailty Risk Score (OFRS) and Hospital Frailty Risk Score (HFRS) using the receiver operating characteristic curve analysis.
Results: The predictive performance of the XGBoost, OFRS, and HFRS for postoperative 90-day mortality was 0.840, 0.607, and 0.588 on a c-statistics basis, respectively.
Conclusions: Using machine learning techniques, XGBoost to predict postoperative 90-day mortality, using diagnostic and operation codes, the prediction performance was improved significantly over the previous risk assessment models such as OFRS and HFRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155414 | PMC |
http://dx.doi.org/10.1186/s12877-023-03969-0 | DOI Listing |
J Chem Inf Model
January 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.
View Article and Find Full Text PDFPLoS One
January 2025
Rice Department, Bangkok, Thailand.
Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.
View Article and Find Full Text PDFPLoS One
January 2025
School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia.
Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.
Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!