Even if some are essential for biological functions, the accumulation of heavy metals above tolerable physiological limits is potentially toxic to also wild animals. The present study aimed to investigate concentrations of environmentally relevant heavy metals (As, Cd, Cu, Fe, Hg, Mn, Pb, and Zn) in feathers, muscle, heart, kidney, and liver tissues of wild birds (golden eagle [Aquila chrysaetos], sparrowhawk [Accipiter nisus], and white stork [Ciconia ciconia]) from Hatay province, southern Turkey. The metal concentrations of tissues were determined by a validated ICP-OES analysis method after microwave digestion. The concentration differences of metals in species/tissues and the correlations between essential/non-essential metals were determined by statistical analysis. According to the results, Fe (326.87±3.60 mg kg) had the highest, and Hg (0.09±0.00 mg kg) had the lowest mean concentration in all tissues. Compared to the literature; Cu, Hg, Pb, and Zn concentrations were lower; Cd, Fe, and Mn concentrations were higher. The correlations between As and all essentials; Cd and Cu, Fe; Hg and Cu, Fe, Zn; Pb and all essentials were significantly positive. In the conclusion, while essential Cu, Fe, and Zn are below the threshold value and do not pose a risk, Mn is close to the threshold value. Therefore, periodically monitoring the pollutant concentrations in bioindicators is a key necessity for the early determination of biomagnification trends and prevention of potential toxic stress on wildlife ecology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27292-8 | DOI Listing |
Sci Total Environ
January 2025
Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).
View Article and Find Full Text PDFArch Microbiol
January 2025
Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt.
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!