This study aimed to assess the UV-shielding features of the PMMA-based thin film coatings with the addition of TiO and ZnO nanoparticles as nanofillers considering different contents. Furthermore, the effect of TiO/ZnO nanohybrids at different ratios and concentrations was examined. The XRD, FTIR, SEM, and EDX analyses characterized the prepared films' functional groups, structure, and morphology. Meanwhile, the coatings' optical properties and UV-protecting capability were investigated by ultraviolet-visible (UV-Vis) spectroscopy. The UV-Vis spectroscopic study revealed that as the concentration of nanoparticles increased in the hybrid-coated PMMA, the absorption in the UVA region increased. Overall, it can be concluded that the optimal coatings for PMMA were 0.1 wt% TiO, 0.1 wt% ZnO, and 0.025:0.025 wt% TiO: ZnO nanohybrid. Considering the acquired FT-IR of PMMA with different content of nanoparticles before and after exposure to the UV irradiation, for some films, it was confirmed that the polymer-based thin films degraded after 720 h, with either decreasing or increasing intensity of the degraded polymer, peak shifting, and band broadening. Notably, the FTIR results were in good agreement with UV-Vis outcomes. In addition, XRD diffraction peaks demonstrated that the pure PMMA matrix and PMMA coating films did not show any characteristic peaks indicating the presence of nanoparticles. All diffraction patterns were similar with and without any nanoparticles. Therefore, it depicted the amorphous nature of polymer thin film.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154292 | PMC |
http://dx.doi.org/10.1038/s41598-023-34120-z | DOI Listing |
Adv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.
MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.
Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.
View Article and Find Full Text PDFChem Sci
October 2024
Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University Chongqing 400044 China
Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!