A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origins of pressure dependent permeability in unconventional hydrocarbon reservoirs. | LitMetric

Unconventional hydrocarbon assets represent a rapidly expanding proportion of North American oil and gas production. Similar to the incipient phase of conventional oil production at the turn of the twentieth century, there are ample opportunities to improve production efficiency. In this work we demonstrate that pressure dependent permeability degradation exhibited by unconventional reservoir materials is due to the mechanical response of a few commonly encountered microstructural constituents. In particular, the mechanical response of unconventional reservoir materials may be conceptualized as the superposed deformation of matrix (or ~ cylindrical/spherical), and compliant (or slit) pores. The former are representative of pores in a granular medium or a cemented sandstone, while the latter represent pores in an aligned clay compact or a microcrack. As a result of this simplicity, we demonstrate that permeability degradation is accounted for through a weighted superposition of conventional permeability models for these pore architectures. This approach permits us to conclude that the most severe pressure dependence is due to imperceptible bedding parallel delamination cracks in the oil bearing argillaceous (clay-rich) mudstones. Finally, we demonstrate that these delaminations tend to populate layers that are enriched with organic carbon. These findings are a basis for improving recovery factors through the development of new completion techniques to exploit, then mitigate pressure dependent permeability in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154339PMC
http://dx.doi.org/10.1038/s41598-023-33601-5DOI Listing

Publication Analysis

Top Keywords

pressure dependent
12
dependent permeability
12
unconventional hydrocarbon
8
permeability degradation
8
unconventional reservoir
8
reservoir materials
8
mechanical response
8
permeability
5
origins pressure
4
unconventional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!