Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal-organic frameworks (MOFs) have been reported as promising materials for electrochemical applications owing to their tunable porous structures and ion-sieving capability. However, it remains challenging to rationally design MOF-based electrolytes for high-energy lithium batteries. In this work, by combining advanced characterization and modeling tools, a series of nanocrystalline MOFs is designed, and the effects of pore apertures and open metal sites on ion-transport properties and electrochemical stability of MOF quasi-solid-state electrolytes are systematically studied. It isdemonstrated that MOFs with non-redox-active metal centers can lead to a much wider electrochemical stability window than those with redox-active centers. Furthermore, the pore aperture of MOFs is found to be a dominating factor that determines the uptake of lithium salt and thus ionic conductivity. The ab initio molecular dynamics simulations further demonstrate that open metal sites of MOFs can facilitate the dissociation of lithium salt and immobilize anions via Lewis acid-base interaction, leading to good lithium-ion mobility and high transference number. The MOF quasi-solid-state electrolyte demonstrates great battery performance with commercial LiFePO and LiCoO cathodes at 30 °C. This work provides new insights into structure-property relationships between tunable structure and electrochemical properties of MOFs that can lead to the development of advanced quasi-solid-state electrolytes for high-energy lithium batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202211841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!