AI Article Synopsis

  • Early-life immune development is essential for long-term health, but the factors influencing postnatal immune maturation are not well understood.
  • The study focused on mononuclear phagocytes in Peyer's patches, showing significant age-related changes that led to reduced T cell priming in young organisms.
  • The research identified that the differentiation of follicle-associated epithelium M cells is crucial for driving the maturation of these immune cells after weaning.

Article Abstract

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262694PMC
http://dx.doi.org/10.1016/j.immuni.2023.04.002DOI Listing

Publication Analysis

Top Keywords

mnp maturation
16
cell maturation
8
immune development
8
postnatal immune
8
fae cell
8
cell differentiation
8
maturation
6
cell
4
maturation cdc
4
cdc activation
4

Similar Publications

Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and designing strategies.

View Article and Find Full Text PDF

An antimicrobial microneedle patch promotes functional healing of infected wounds through controlled release of adipose tissue-derived apoptotic vesicles.

J Nanobiotechnology

September 2024

State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.

The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages.

View Article and Find Full Text PDF

Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges.

Biomater Biosyst

September 2024

BioDevice Systems s.r.o., Bulharska 996/20, Praha 10, Czech Republic.

The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.

View Article and Find Full Text PDF

Introduction: Axonal plasticity is strongly related to neuronal development as well as regeneration. It was recently demonstrated that active mechanical tension, intended as an extrinsic factor, is a valid contribution to the modulation of axonal plasticity.

Methods: In previous publications, our team validated a the "nano-pulling" method used to apply mechanical forces to developing axons of isolated primary neurons using magnetic nanoparticles (MNP) actuated by static magnetic fields.

View Article and Find Full Text PDF

Metallic nanoparticles (mNPs) are widely used as food additives and can interact with gliadin triggering an immune response, but evaluation of the effects on crypts, hypertrophic in celiac subjects, is still lacking. This study evaluated the effects of gold and silver mNPs in combination with gliadin on crypt-like cells (HIEC-6). Transmission electron microscopy (TEM) was used to evaluate gliadin-mNP aggregates in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!