Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway.

Phytomedicine

Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China. Electronic address:

Published: July 2023

Background: The limited understanding of the pathological mechanisms of intracerebral hemorrhage (ICH) and the absence of successful therapies lead to poor prognoses for patients with ICH. Dihydromyricetin (DMY) has many physiological functions, such as regulating lipid and glucose metabolism and modulating tumorigenesis. Moreover, DMY has been proven to be an effective treatment of neuroprotection. However, no reports to date have been made regarding the impact of DMY on ICH.

Purpose: This investigation aimed to identify the role of DMY on ICH in mice and the underlying mechanisms.

Methods/results: This study demonstrated that DMY treatment effectively reduced hematoma size and cell apoptosis of brain tissue, and improved neurobehavioral outcomes in mice with ICH. Transcriptional and network pharmacological analyses revealed that lipocalin-2 (LCN2) was a potential target of DMY in ICH. After ICH, LCN2 mRNA and protein expression in brain tissue increased and DMY could inhibit the expression of LCN2. The rescue experiment with the implementation of LCN2 overexpression verified these observations. Furthermore, after DMY treatment, there was a significant decrease in cyclooxygenase 2 (COX2), phospho-extracellular regulated protein kinase (P-ERK), iron deposition, and the number of abnormal mitochondria, which were reversed by the overexpression of LCN2. Proteomics analysis suggests that SLC3A2 may be the downstream target of LCN2, promoting ferroptosis. Finally, LCN2 was shown to bind to SLC3A2 and regulate the downstream glutathione (GSH) synthesis and Glutathione Peroxidase 4 (GPX4) expression and glutathione (GSH) synthesis, as determined by molecular docking and co-immunoprecipitation analysis.

Conclusion: Our study confirmed for the first time that DMY might offer a favorable treatment for ICH through its action on LCN2. The possible mechanism for this could be that DMY reverses the inhibitory effect of LCN2 on the system Xc-, lessening ferroptosis in brain tissue. The findings of this study offer a greater understanding of how DMY affects ICH at a molecular level and could be conducive to developing therapeutic targets for ICH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2023.154756DOI Listing

Publication Analysis

Top Keywords

dmy ich
12
brain tissue
12
dmy
11
lcn2
10
ich
9
intracerebral hemorrhage
8
lcn2 system
8
system xc-
8
dmy treatment
8
glutathione gsh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!