Synthesis and characterization of strippable polymeric-gel solution based on a water-soluble polymer (PVA), plasticizing agent (glycerol), and chelating agent (8-Hydroxyquinoline) for the surface decontamination from Cs and Co was carried out. Decontamination of glass and PVC surfaces was investigated in the present study, as a function of various chelating agents, gel-layer thickness, and radioactivity level. The decontamination efficiency was up to 95% for both radionuclides after 24 h of contact time with the contaminated surface. The obtained results suggest that the decontamination process of Cs and Co by polymer gel is possible combined by two mechanisms: chemically and physically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2023.110834 | DOI Listing |
Small Methods
December 2024
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.
Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2024
ten23 health AG, Mattenstr. 22, 4058 Basel, Switzerland; Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany. Electronic address:
Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
Carbon nanotubes-driven persulfates oxidation processes (CNTs/PS) have been extensively studied for environmental remediation. Solution pH is one of the main factors affecting wastewater treatment, but it is often overlooked. Herein, we report the effect laws of pH on the mechanism of peroxymonosulfate (PMS) or peroxydisulfate (PDS) activation by CNTs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
Malachite green is a hazardous chemical that poses serious threats to aquatic ecosystems due to its toxicity and persistence in the environment. Additionally, it is harmful to human health, recognized as a carcinogenic and mutagenic agent that can cause long-term adverse effects. Hence, in this study, malachite green dye was efficiently removed from aqueous media using CoO/MgO/MgBO novel nanocomposites, known as CBM600 and CBM800.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!