Organoazide rearrangement constitutes versatile synthetic strategies but typically requires an extremely strong acid and/or a high reaction temperature. Our group recently discovered the remarkable accelerating effect of the geminal fluorine substituent that enables the facile rearrangement of azides into imidoyl fluorides without the aid of acid under much milder reaction conditions. The role of geminal fluorine was elucidated by both experimental and computational investigations. This new reactivity led to the development of a practical one-step tandem preparative method for potentially useful and bench-stable imidoyl fluorides from a wide range of structurally diverse geminal chlorofluorides. Our additional efforts to expand the reaction scope regarding the migrating group, halogen, and carbonyl function are described, and the synthetic utility of the imidoyl fluoride products was demonstrated in hopes of promoting the use of this under-appreciated functional group in the synthetic organic community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.3c00183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!