A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic Control via Binding Sites within the Confined Space of Metal Metalloporphyrin-Frameworks for Enhanced Shape-Selectivity Catalysis. | LitMetric

One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape-selectivity of product by the confined spatial environment. The success of shape-selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal-organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape-selectivity for the reactions. For this purpose, a series of binding site-accessible metal metalloporphyrin-frameworks (MMPFs) have been investigated to shed light on the nature of enzyme-mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202304303DOI Listing

Publication Analysis

Top Keywords

binding sites
12
kinetic control
8
metal metalloporphyrin-frameworks
8
targeting strategy
8
binding
6
control binding
4
sites confined
4
confined space
4
space metal
4
metalloporphyrin-frameworks enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!