A desymmetrizing silylation of aromatic diols is reported. The previously unknown asymmetric silyl ether formation of phenol derivatives is achieved by applying List's counteranion directed silylation technique. A silylium-ion-like silicon electrophile generated from an allylic silane paired with an imidodiphosphorimidate (IDPi) enables enantioselective discrimination of achiral 1,1'-biaryl-2,6-diols. The enantioselectivity of that desymmetrization is further improved by a downstream kinetic resolution, converting the monosilylated minor enantiomer into the corresponding, again achiral bissilylated diol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202304475DOI Listing

Publication Analysis

Top Keywords

counteranion directed
8
kinetic resolution
8
atroposelective silylation
4
silylation 11'-biaryl-26-diols
4
11'-biaryl-26-diols chiral
4
chiral counteranion
4
directed desymmetrization
4
desymmetrization enhanced
4
enhanced subsequent
4
subsequent kinetic
4

Similar Publications

Identification of disulfide-peptide-bond-containing glutathione (GSSG) over the monosulfide form (GSH) remains a very challenging task because of their identical chemical properties. Although GSH detection has been well documented, selective detection of GSSG has rarely been reported. Here, four cationic Ag-based coordination polymers (Ag CPs) were synthesized using newly synthesized monotriazole linker 3-amino-5-(4-1,2,4-triazol-4-yl)pyridine to selectively screen GSSG over GSH.

View Article and Find Full Text PDF

Anion Recognition-Directed Supramolecular Catalysis with Functional Macrocycles and Molecular Cages.

Acc Chem Res

November 2024

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Article Synopsis
  • The text discusses the advancements in supramolecular chemistry, particularly focusing on how host molecules and noncovalent interactions can enhance catalytic processes through supramolecular catalysis.
  • It highlights the significance of macrocyclic and cage-like compounds which mimic enzymes and possess unique recognition features, emphasizing the underutilization of directional binding sites in traditional host molecules.
  • The study introduces a novel approach using tailor-made functionalized macrocycles and cages specifically designed for anion recognition, which enhances catalytic efficiency and stereocontrol in reactions by leveraging strong anion binding and cooperative interactions.
View Article and Find Full Text PDF

Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved.

View Article and Find Full Text PDF

The control of enantioselectivity in radical cation reactions presents long-standing challenges, despite a few successful examples. We introduce a novel strategy of asymmetric counteranion-directed electrocatalysis to address enantioselectivity in radical cation chemistry. This concept has been successfully demonstrated in two reactions: an asymmetric dehydrogenative indole-phenol [3+2] coupling and an atroposelective C-H/N-H dehydrogenative coupling.

View Article and Find Full Text PDF

Direct coupling of benzotriazole to unsaturated substrates such as allenes represents an atom-efficient method for the construction of biologically and pharmaceutically interesting functional structures. In this work, the mechanism of the -selective Rh complex-catalyzed coupling of benzotriazoles to allenes was investigated in depth using a combination of experimental and theoretical techniques. Substrate coordination, inhibition, and catalyst deactivation was probed in reactions of the neutral and cationic catalyst precursors [Rh(μ-Cl)(DPEPhos)] and [Rh(DPEPhos)(MeOH)] with benzotriazole and allene, giving coordination, or coupling of the substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!