Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology. We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393367 | PMC |
http://dx.doi.org/10.1152/ajpgi.00011.2023 | DOI Listing |
Mol Cell Biol
October 2024
Department of Pharmacology, Yamagata University School of Medicine, Yamagata, Japan.
Parkinson's disease (PD) is an age-related progressive neurodegenerative disease. Previously, we identified midnolin () as a genetic risk factor for PD. Although copy number loss increases the risk of PD, the molecular function of MIDN remains unclear.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2023
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States.
Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model.
View Article and Find Full Text PDFBiol Pharm Bull
August 2018
Department of Pharmacology, Yamagata University School of Medicine.
We recently found that 10.5% of sporadic Parkinson's disease (PD) patients lacked one copy of the midnolin (MIDN) gene. In addition, gene knock-down/out of MIDN caused down-regulation of parkin E3 ubiquitin ligase, indicating MIDN to be a novel PD-risk factor or causative gene.
View Article and Find Full Text PDFSci Rep
July 2017
Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
Midnolin (MIDN) was first discovered in embryonic stem cells, but its physiological and pathological roles are, to date, poorly understood. In the present study, we therefore examined the role of MIDN in detail. We found that in PC12 cells, a model of neuronal cells, MIDN localized primarily to the nucleus and intracellular membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!