The molecular mechanism underlying inhibition of ice growth by polyproline (PPro), a minimal antifreeze glycoprotein mimic, remains unclear. In this work, the change in the structure of water during the growth of ice in PPro solutions was investigated using a combination of near-infrared spectroscopy and molecular dynamics (MD) simulations. The results show that only high concentrations of PPro solutions can effectively inhibit ice growth, as indicated by the variation in the spectral intensity of ice with time. When PPro exhibits an antifreeze effect, the spectral intensity of hydrated water associated with PPro in a solution is weakened. The experiments and MD simulations reveal that the quantity of the interfacial water between the ice crystal and the hydrophobic groups of PPro progressively reaches a plateau. Most significantly, we present clear evidence that the stable existence of this interfacial water is critical for the antifreeze activity of PPro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00577 | DOI Listing |
Polymers (Basel)
December 2024
Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.
In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.
View Article and Find Full Text PDFMolecules
December 2024
Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasourg, Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, 1 Rue Eugène Boeckel, F-67000 Strasbourg, France.
Specific ion effects on the structure and function of many biological macromolecules, their associations, colloidal systems, interfacial phenomena, and even "simple" electrolytes solutions are ubiquitous. The molecular origin of such phenomena is discussed either as a salt-induced change of the water structure (the hydrogen bond network) or some specific (solvent mediated) interactions of one or both of the ions of the electrolyte with the investigated co-solute (macromolecules or colloidal particles). The case of hydrogels is of high interest but is only marginally explored with respect to other physico-chemical systems because they are formed through the interactions of gelling agents in the presence of water and the added electrolyte.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing 163318, China.
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.
View Article and Find Full Text PDFMolecules
December 2024
Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain.
The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!