The absorption spectra of congenetic wurtzite (WZ) and zincblende (ZB) CdS magic-sized clusters are investigated. We demonstrate that the exciton peak positions can be tuned by up to 500 meV by varying the strong coupling between X-type ligands and the semiconductor cores, while the addition of L-type ligands primarily affects cluster midgap states. When Z-type ligands are displaced by L-type ligands, red shifts in the absorption spectra are observed, despite the fact there is a small decrease in cluster size. Density functional theory calculations are used to explain these findings and they reveal the importance of Cd and S dangling bonds on the midgap states during the Z- to L-type ligand exchange process. Overall, ZB CdS clusters show higher chemical stability than WZ clusters but their optical properties exhibit greater sensitivity to the solvent. Conversely, WZ CdS clusters are not stable in a Lewis base-rich environment, resulting in various changes in their spectra. Our findings enable researchers to select capping ligands that modulate the optical properties of semiconductor clusters while maintaining precise control over their solvent interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0147609 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.
An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.
View Article and Find Full Text PDFJ Org Chem
January 2025
Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
Chiral organic molecules with a complementing π-structure are highly desired to obtain materials with good semiconducting properties and pronounced chirality effects in the visible region. Herein, we introduce a novel design strategy to achieve an axially chiral and rigid perylene bisimide (PBI) dye by attaching the chirality-inducing 2,2'-biphenoxy moiety at one side of the bay area and the rigidity-inducing di--butylsilanediol bridge on the other side. This yielded a new bay-functionalized PBI derivative carrying the combination of a highly rigid and, simultaneously, an axially chiral perylene core.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!