Single-Walled Carbon Nanotube/Copper Core-Shell Fibers with a High Specific Electrical Conductivity.

ACS Nano

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

Published: May 2023

Carbon nanotube (CNT)/Cu core-shell fibers are a promising material for lightweight conductors due to their higher conductivity than pure CNT fibers and lower density than traditional Cu wires. However, the electrical properties of the hybrid fiber have been unsatisfactory, mainly because of the weak CNT-Cu interfacial interaction. Here we report the fabrication of a single-walled CNT (SWCNT)/Cu core-shell fiber that outperforms commercial Cu wires in terms of specific electrical conductivity and current carrying capacity. A dense and uniform Cu shell was coated on the surface of wet-spun SWCNT fibers using a combination of magnetron sputtering and electrochemical deposition. Our SWCNT/Cu core-shell fibers had an ultrahigh specific electrical conductivity of (1.01 ± 0.04) × 10 S m kg, 56% higher than Cu. Experimental and simulation results show that oxygen-containing functional groups on the surface of a wet-spun SWCNT fiber interact with the sputtered Cu atoms to produce strong bonding. Our hybrid fiber preserved its integrity and conductivity well after more than 5000 bending cycles. Furthermore, the current carrying capacity of the coaxial fiber reached 3.14 × 10 A cm, three times that of commercial Cu wires.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c00488DOI Listing

Publication Analysis

Top Keywords

core-shell fibers
12
specific electrical
12
electrical conductivity
12
hybrid fiber
8
swcnt/cu core-shell
8
commercial wires
8
current carrying
8
carrying capacity
8
surface wet-spun
8
wet-spun swcnt
8

Similar Publications

Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor.

Talanta

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:

Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.

View Article and Find Full Text PDF

The ability to add bioactivities, such as cell signaling or ligand recognition, to biomaterials has generated the potential to include multiple bioactivities into a single material. In some cases, it is desirable to localize these activities to different areas of the biomaterial, creating functional patterns. While photolithography and 3D printing have been effective techniques for patterning functions in many materials, patterning remains a challenge in materials composed of protein, in part due to how these materials are artificially assembled.

View Article and Find Full Text PDF

EGCG-Modified Bioactive Core-Shell Fibers Modulate Oxidative Stress to Synergistically Promote Vascularized Bone Regeneration.

ACS Biomater Sci Eng

January 2025

Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China.

Oxidative stress induced by reactive oxygen species (ROS) can adversely affect tissue repair, whereas endowing biomaterials with antioxidant activity can improve the in vivo microenvironment, thereby promoting angiogenesis and osteogenesis. Accordingly, this study utilized epigallocatechin-3-gallate (EGCG), a material known for its reducing properties, oxidative self-polymerization capability, and strong binding characteristics, to modify a bioactive core-shell fibrous membrane (10RP-PG). Compared to the 10RP-PG fibrous membrane, the EGCG-modified fibrous membrane (E/10RP-PG) exhibited superior hydrophilicity, excellent cell adhesion, and compatibility.

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Self-healing materials have been extensively explored in metal anti-corrosion fields. However, improving the self-healing efficiency remains a significant work that severely limits their further development. Here, a strategy to fabricate anti-corrosion coatings with efficient self-healing properties based on microfluidic electrospinning technologies and UV-curable healing agents is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!