MicroRNA (miRNA/miR) 526 b- and miR655-overexpressed tumor cell-free secretions regulate the breast cancer tumor microenvironment (TME) by promoting tumor-associated angiogenesis, oxidative stress, and hypoxic responses. Additionally, premature miRNA (pri-miR526b and pri-miR655) are established breast cancer blood biomarkers. However, the mechanisms of how these miRNAs regulate the TME has yet to be investigated. Mass spectrometry analysis of miRNA-overexpressed cell lines MCF7-miR526b, MCF7-miR655, and miRNA-low MCF7-Mock cell-free secretomes identified 34 differentially expressed proteins coded by eight genes. In both miRNA-high cell secretomes, four markers are upregulated: , , , and and four are downregulated: , , , and . All upregulated marker transcripts are significantly high in both total cellular RNA pool and cell-free secretions of miRNA-high cell lines, validated with quantitative RT-PCR. Bioinformatics tools were used to investigate these markers' roles in breast cancer. These markers' top gene ontology functions are related to apoptosis, oxidative stress, membrane transport, and motility supporting oncogenic miR526b- and miR655-induced functions. Gene transcription factor analysis tools were used to show how these miRNAs regulate the expression of each secretory marker. Data extracted from the Human Protein Atlas showed that YWHAB, SFN, and TXNDC12 expression could distinguish early and late-stage breast cancer in various breast cancer subtypes and are associated with poor patient survival. Additionally, immunohistochemistry analysis showed the expression of each marker in breast tumors. A stronger correlation between miRNA clusters and upregulated secretory markers gene expression was found in the luminal A tumor subtype. YWHAB, SFN, and MYL6B are upregulated in breast cancer patient's blood, showing biomarker potential. Of these identified novel miRNA secretory markers, SFN and YWHAB successfully passed all validations and are the best candidates to further investigate their roles in miRNA associated TME regulation. Also, these markers show the potential to serve as blood-based breast cancer biomarkers, especially for luminal-A subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148110PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15421DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
breast
9
tumor microenvironment
8
cell-free secretions
8
oxidative stress
8
mirnas regulate
8
cell lines
8
mirna-high cell
8
ywhab sfn
8
secretory markers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!