A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanically Robust and Room Temperature Self-Healing Ionogel Based on Ionic Liquid Inhibited Reversible Reaction of Disulfide Bonds. | LitMetric

Mechanically Robust and Room Temperature Self-Healing Ionogel Based on Ionic Liquid Inhibited Reversible Reaction of Disulfide Bonds.

Adv Sci (Weinh)

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai, 201620, P. R. China.

Published: July 2023

Although highly desired, it is difficult to develop mechanically robust and room temperature self-healing ionic liquid-based gels (ionogels), which are very promising for next-generation stretchable electronic devices. Herein, it is discovered that the ionic liquid significantly reduces the reversible reaction rate of disulfide bonds without altering its thermodynamic equilibrium constant via small molecule model reaction and activation energy evolution of the dissociation of the dynamic network. This inhibitory effect would reduce the dissociated units in the dynamic polymeric network, beneficial for the strength of the ionogel. Furthermore, aromatic disulfide bonds with high reversibility are embedded in the polyurethane to endow the ionogel with superior room temperature self-healing performance. Isocyanates with an asymmetric alicyclic structure are chosen to provide optimal exchange efficiencies for the embedded disulfide bonds relative to aromatic and linear aliphatic. Carbonyl-rich poly(ethylene-glycol-adipate) diols are selected as soft segments to provide sufficient interaction sites for ionic liquids to endow the ionogel with high transparency, stretchability, and elasticity. Finally, a self-healing ionogel with a tensile strength of 1.65 ± 0.08 MPa is successfully developed, which is significantly higher than all the reported transparent room temperature self-healing ionogel and its application in a 3D printed stretchable numeric keyboard is exemplified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369268PMC
http://dx.doi.org/10.1002/advs.202207527DOI Listing

Publication Analysis

Top Keywords

room temperature
16
temperature self-healing
16
disulfide bonds
16
self-healing ionogel
12
mechanically robust
8
robust room
8
ionic liquid
8
reversible reaction
8
endow ionogel
8
ionogel
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!