Small
School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
Published: September 2023
High-performance microwave absorption (MA) materials have attracted more and more attention because they can effectively prevent microwave radiation and interference from electronic devices. Herein, a new type of MA composite is constructed by introducing carbon nanotubes (CNTs)-anchored metal-organic framework derivatives (MOFDs) into a conductive carbon nanocoil (CNC) network, denoted as CNC/CNT-MOFD. The CNC/MOFD shows a wide effective absorption band of 6.7 GHz under a filling ratio of only 9% in wax-matrix. This is attributed to the hierarchical and porous structures of MOFD bridged by the uniformly dispersed conductive CNC network and the cross-polarization induced by the 3D spiral CNCs. Besides, the as-grown 1D CNTs improve space utilization, porosity, and polarization loss of the composites, resulting in the increase of imaginary permittivity, which further realizes impedance matching and energy attenuation. The Ni nanoparticles in layers of MOFD and at the tips of CNTs generate magnetic loss, promoting the low-frequency absorption ability. Resultantly, RCS values of the optimized composite in all tested theta (θ) ranges are less than -25 dB m at 9.5 GHz, effectively reducing the probability of the target detected by the radar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202301992 | DOI Listing |
Int J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFEnviron Res
January 2025
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:
Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.
View Article and Find Full Text PDFChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Chemistry, Liaoning University, Shenyang, 110036, PR China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, PR China. Electronic address:
Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.