Novel episomal systems have the potential to accelerate plastid genetic engineering for application in plant synthetic biology. Plastids represent valuable subcellular compartments for genetic engineering of plants with intrinsic advantages to engineering the nucleus. The ability to perform site-specific transgene integration by homologous recombination (HR), coordination of transgene expression in operons, and high production of heterologous proteins, all make plastids an attractive target for synthetic biology. Typically, plastid engineering is performed by homologous recombination; however, episomal-replicating vectors have the potential to accelerate the design/build/test cycles for plastid engineering. By accelerating the timeline from design to validation, it will be possible to generate translational breakthroughs in fields ranging from agriculture to biopharmaceuticals. Episomal-based plastid engineering will allow precise single step metabolic engineering in plants enabling the installation of complex synthetic circuits with the ambitious goal of reaching similar efficiency and flexibility of to the state-of-the-art genetic engineering of prokaryotic systems. The prospect to design novel episomal systems for production of transplastomic marker-free plants will also improve biosafety for eventual release in agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-023-03020-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!