Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting.

Nat Struct Mol Biol

Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands.

Published: May 2023

Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by the remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in Saccharomyces cerevisiae to measure how bursting changes upon combined perturbations of chromatin remodelers, the transcription factor Gal4 and preinitiation complex components. Using dynamic epistasis analysis, we reveal how the remodeling of different nucleosomes regulates transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. At canonical TATA boxes, the nucleosomes are displaced by TBP binding to allow for transcription activation even in the absence of remodelers. Overall, our results reveal how promoter nucleosome remodeling together with Gal4 and preinitiation complex binding regulates transcriptional bursting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191856PMC
http://dx.doi.org/10.1038/s41594-023-00981-1DOI Listing

Publication Analysis

Top Keywords

transcriptional bursting
16
regulates transcriptional
12
dynamic epistasis
8
epistasis analysis
8
gal4 preinitiation
8
preinitiation complex
8
gal4 binding
8
nucleosome remodeling
8
bursting
6
remodeling
5

Similar Publications

RNA polymerase II (RNAPII) is regulated by sequence-specific transcription factors (TFs) and the pre-initiation complex (PIC): TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, Mediator. TFs and Mediator contain intrinsically-disordered regions (IDRs) and form phase-separated condensates, but how IDRs control RNAPII function remains poorly understood. Using purified PIC factors, we developed a Real-time In-vitro Fluorescence Transcription assay (RIFT) for second-by-second visualization of RNAPII transcription at hundreds of promoters simultaneously.

View Article and Find Full Text PDF

Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm.

View Article and Find Full Text PDF

Gene function revealed at the moment of sitochastic gene silencing.

Commun Biol

January 2025

Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.

Gene expression is a dynamic and stochastic process characterized by transcriptional bursting followed by periods of silence. Single-cell RNA sequencing (scRNA-seq) is a powerful tool to measure transcriptional bursting and silencing at the individual cell level. In this study, we introduce the single-cell Stochastic Gene Silencing (scSGS) method, which leverages the natural variability in single-cell gene expression to decipher gene function.

View Article and Find Full Text PDF

Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.

View Article and Find Full Text PDF

B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!